skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Markoff, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract General relativistic magnetohydrodynamic (GRMHD) simulations have revolutionized our understanding of black hole accretion. Here, we present a GPU-accelerated GRMHD code H-AMR with multifaceted optimizations that, collectively, accelerate computation by 2–5 orders of magnitude for a wide range of applications. First, it introduces a spherical grid with 3D adaptive mesh refinement that operates in each of the three dimensions independently. This allows us to circumvent the Courant condition near the polar singularity, which otherwise cripples high-resolution computational performance. Second, we demonstrate that local adaptive time stepping on a logarithmic spherical-polar grid accelerates computation by a factor of ≲10 compared to traditional hierarchical time-stepping approaches. Jointly, these unique features lead to an effective speed of ∼109zone cycles per second per node on 5400 NVIDIA V100 GPUs (i.e., 900 nodes of the OLCF Summit supercomputer). We illustrate H-AMR's computational performance by presenting the first GRMHD simulation of a tilted thin accretion disk threaded by a toroidal magnetic field around a rapidly spinning black hole. With an effective resolution of 13,440 × 4608 × 8092 cells and a total of ≲22 billion cells and ∼0.65 × 108time steps, it is among the largest astrophysical simulations ever performed. We find that frame dragging by the black hole tears up the disk into two independently precessing subdisks. The innermost subdisk rotation axis intermittently aligns with the black hole spin, demonstrating for the first time that such long-sought alignment is possible in the absence of large-scale poloidal magnetic fields. 
    more » « less
  2. Abstract Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high-resolution (5376 × 2304 × 2304 cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, nonaxisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet’s magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A* observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in the mass accretion rate during the flare and the resulting low-density magnetosphere make it easier for very-high-energy photons produced by reconnection-accelerated particles to escape. The extreme-resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare. 
    more » « less
  3. null (Ed.)
    ABSTRACT Luminous active galactic nuclei and X-ray binaries often contain geometrically thin, radiatively cooled accretion discs. According to theory, these are – in many cases – initially highly misaligned with the black hole equator. In this work, we present the first general relativistic magnetohydrodynamic simulations of very thin (h/r ∼ 0.015–0.05) accretion discs around rapidly spinning (a ∼ 0.9) black holes and tilted by 45°–65°. We show that the inner regions of the discs with h/r ≲ 0.03 align with the black hole equator, though out to smaller radii than predicted by analytic work. The inner aligned and outer misaligned disc regions are separated by a sharp break in tilt angle accompanied by a sharp drop in density. We find that frame dragging by the spinning black hole overpowers the disc viscosity, which is self-consistently produced by magnetized turbulence, tearing the disc apart and forming a rapidly precessing inner sub-disc surrounded by a slowly precessing outer sub-disc. We find that the system produces a pair of relativistic jets for all initial tilt values. At small distances, the black hole launched jets precess rapidly together with the inner sub-disc, whereas at large distances they partially align with the outer sub-disc and precess more slowly. If the tearing radius can be modeled accurately in future work, emission model independent measurements of black hole spin based on precession-driven quasi-periodic oscillations may become possible. 
    more » « less
  4. Abstract We report a timing analysis of near-infrared (NIR), X-ray, and submillimeter data during a 3 day coordinated campaign observing Sagittarius A*. Data were collected at 4.5 μ m with the Spitzer Space Telescope, 2–8 keV with the Chandra X-ray Observatory, 3–70 keV with NuSTAR, 340 GHz with ALMA, and 2.2 μ m with the GRAVITY instrument on the Very Large Telescope Interferometer. Two dates show moderate variability with no significant lags between the submillimeter and the infrared at 99% confidence. A moderately bright NIR flare ( F K ∼ 15 mJy) was captured on July 18 simultaneous with an X-ray flare ( F 2−10 keV ∼ 0.1 counts s −1 ) that most likely preceded bright submillimeter flux ( F 340 GHz ∼ 5.5 Jy) by about + 34 − 33 + 14 minutes at 99% confidence. The uncertainty in this lag is dominated by the fact that we did not observe the peak of the submillimeter emission. A synchrotron source cooled through adiabatic expansion can describe a rise in the submillimeter once the synchrotron self-Compton NIR and X-ray peaks have faded. This model predicts high GHz and THz fluxes at the time of the NIR/X-ray peak and electron densities well above those implied from average accretion rates for Sgr A*. However, the higher electron density postulated in this scenario would be in agreement with the idea that 2019 was an extraordinary epoch with a heightened accretion rate. Since the NIR and X-ray peaks can also be fit by a nonthermal synchrotron source with lower electron densities, we cannot rule out an unrelated chance coincidence of this bright submillimeter flare with the NIR/X-ray emission. 
    more » « less
  5. ABSTRACT The radiative counterpart of the supermassive black hole at the Galactic Centre, Sagittarius A*, displays flaring emission in the X-ray band atop a steady, quiescent level. Flares are also observed in the near-infrared band. The physical process producing the flares is not fully understood and it is unclear if the flaring rate varies, although some recent works suggest it has reached unprecedented variability in recent years. Using over a decade of regular X-ray monitoring of Neil Gehrels Swift Observatory, we studied the variations in count rate of Sgr A* on time-scales of years. We decomposed the X-ray emission into quiescent and flaring emission, modelled as a constant and power-law process, respectively. We found that the complete, multiyear data set cannot be described by a stationary distribution of flare fluxes, while individual years follow this model better. In three of the ten studied years, the data is consistent with a purely Poissonian quiescent distribution, while for 5 yr, only an upper limit of the flare flux distribution parameter could be determined. We find that these possible changes cannot be explained fully by the different number of observations per year. Combined, these results are instead consistent with a changing flaring rate of Sgr A*, appearing more active between 2006–2007 and 2017–2019, than between 2008–2012. Finally, we discuss this result in the context of flare models and the passing of gaseous objects, and discuss the extra statistical steps taken, for instance, to deal with the background in the Swift observations. 
    more » « less
  6. ABSTRACT Sgr A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics code H-AMR to perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing code bhoss to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ∼60 h light curves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the light curves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetized accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms per cent amplitudes, $$\gtrsim 150{{\ \rm per\ cent}}$$ both in the NIR and the X-rays, with changes in the accretion rate driving the 230 GHz flux variability, in agreement with Sgr A* observations. 
    more » « less
  7. null (Ed.)
  8. ABSTRACT A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities. 
    more » « less
    Free, publicly-accessible full text available May 15, 2026
  9. Abstract Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay atγ-ray energies and are predicted to be sources of large-scaleγ-ray emission due to hadronic interactions in the intracluster medium (ICM).In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuseγ-ray emission from the Perseus galaxy cluster.We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed.In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratioX500within the characteristic radiusR500down to aboutX500< 3 × 10-3, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp= 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRpdown to about ΔαCRp≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-basedγ-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models withτχ> 1027s for DM masses above 1 TeV.These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. 
    more » « less